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Abstract

We have recently studied various mesogenic lattice models, involving classi-

cal uniaxial particles, possessing D∞h symmetry, whose centres of mass are

associated with a two-dimensional (square) lattice; interactions are restricted

to nearest neighbours and involve both mutual orientations between the two

particles and their orientations with respect to the intermolecular vectors; in

2 − d, the anisotropic character of these potential models does not preclude

the existence of orientational order at finite temperature.

The models were studied by means of Mean Field (MF) theory and Monte

Carlo simulations; in some cases, they were found to produce a low-

temperature phase possessing biaxial order. MF predictions and simulation

results appear to agree qualitatively, but in quantitative terms the MF pre-

diction for the biaxial to uniaxial transition temperature is some 50% too

high.

In some other cases, both MF and simulation results show homeotropic an-

choring, and a weaker uniaxial orientational order, now surviving up to tem-

peratures higher than the transition temperature of the 3−dimensional coun-

terpart, possibly at all finite temperatures.

Keywords: liquid crystals,nematics, lattice models, anchoring, monolayers.

PACS Numbers: 61.30, 64.70
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INTRODUCTION

In addition the bulk properties of Liquid Crystals, their surfaces and interfaces, and their

behaviour in restricted geometries (e.g. polymer-dispersed drops, thin layers, mesogens

in porous media) are of great interest in fundamental as well as applicative terms, and

have been extensively studied, both experimentally and theoretically; in comparison with

the bulk, profound modifications may result from the restricted environment; for example,

experiments on nematic thin layers show that, depending on mesogen and substrate, the

Nematic to Isotropic transiton may survive, or disappear, or change to continuous, and its

transition temperature may both decrease or (more seldom) increase.

In some theoretical studies one considers the extreme case where particles’ centres of mass

are associated with a 2−dimensional space; the effect of dimensionality can be gauged by

comparisons with potential models defined by the same interaction law, but where particles’

centers of mass belong to a 3−dimensional space (the 3− d counterparts, or 3− d versions,

for short). A number of such models have been discussed in the Literature both in the case

where particles’ centres of mass are associated with a lattice, and in the continuum one

where they sweep the plane R2; existence or absence of an ordering transition taking place

at finite temperature have been proven rigorously in some simple cases.
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POTENTIAL MODELS: DISPERSION INTERACTIONS

We are considering here n−component unit vectors (usually n = 3), associated with the

nodes of a d−dimensional lattice Zd (d = 2, 3); let xk denote the coordinate vectors of

lattice sites, let uk denote the unit vectors, and let uk,α denote their Cartesian components

with respect to an orthonormal basis E = {eα, α = 1, 2, 3}, (partly) defined by lattice axes.

To fix the notation, when d = 2, e3 (the z−axis) shall be taken to be orthogonal to the

lattice plane, and e1, e2 shall be referred to as lattice axes; the unit vectors uk can also

be parameterized by usual polar angles {θk, φk}; all interactions are restricted to nearest

neighbours.

According to the quantum theory of intermolecular forces the dipolar contribution to the

dispersion energy between two identical, neutral and centrosymmetric linear molecules has

the general form

Djk =
1

r6
[g0 + g1(a

2

j + a2

k) + g2ajakbjk + g3b
2

jk + g4(ajak)
2], (1)

r = xj − xk, r = |r|, s = r/r, aj = uj · s, ak = uk · s, bjk = uj · uk. (2)

Under additional simplifications, Eq. (1) leads to the expression proposed by London, Heller

and de Boer (LHB) in the 1930′s, i.e.

D̃jk =
ε

r6
[(γ2 − γ)Sjk −

3

2
γ2hjk + γ2 − 1], ε =

3

4
Eα2, (3)

where

hjk = (3ajak − bjk)
2, Sjk = P2(aj) + P2(ak), α =

1

3
(α‖ + 2α⊥), γ =

α‖ − α⊥

3α
. (4)

Here α‖, α⊥ are the eigenvalues of the molecular polarizability tensor, γ denotes its relative

anisotropy, and E is a mean excitation energy; the extreme case γ = −(1/2) corresponds to

no polarizability along the molecular symmetry axis, whereas in the other extreme γ = +1

there is polarizability along the molecular axis only. In the following, let ∆jk denote the

restriction of D̃jk to nearest neighbours, i.e.
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∆jk = ε[(γ2 − γ)Sjk + γ2(−3

2
hjk + 1)], (5)

where the purely positional term appearing in Eq. (3) has been dropped.

Lattice models based on Eq. (3) have been investigated by simulation in 3− d; the nearest-

neighbour model ∆jk produces a nematic-like ordering transition; in contrast, inclusion of

next-nearest neighbours produces a ground state structure with sub-lattice order but no net

orientational order.

Another related mesogenic potential model was proposed by Nehring and Saupe (NS) over

25 years ago, and has the form

Φjk = − ε

r6
hjk; (6)

it has often been used for approximate calculations of elastic properties its restriction to

nearest neighbours, defined by

Ψjk = ε(−3

2
hjk + 1), (7)

has later been studied by simulation in 3 − d. Comparison between the relevant equations

(Eq. (3) and (7)), shows that NS corresponds to the limiting case γ = +1 in the LHB

model. Moreover, on a saturated cubic lattice and under periodic boundary conditions, the

two models ∆jk and Ψjk become equivalent (see below).

For the present model the configuration where the two molecules are parallel to each other

and to the intermolecular vector (i.e. aj = ak = bjk = ±1) has an energy −ε(2γ + 3γ2);

in contrast, when both molecules are parallel to each other and perpendicular to the inter-

molecular vector, the energy is ε[γ − (3/2)γ2]; both configurations correspond to minima in

the dispersion potential.

For a periodically repeated sample on a lattice Zd, each particle interacts with (2d) nearest

neighbours, and the possible orientations of the intermolecular vector s are ±eα, α = 1, . . . d;

moreover, for any unit vector uk and for any lattice site xk,

uk · uk =
3

∑

α=1

(eα · uk)
2; (8)
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when d = 3, this identity entails that, upon summing over all interacting pairs, the terms

in the pair potential containing Sjk cancel out [1,2]; thus ∆jk = γ2Ψjk, and any (non-zero)

value of γ can be scaled away. On the other hand, when d = 2,

2
∑

α=1

P2(uk · eα) = −P2(uk · e3); (9)

upon summing over all interacting pairs, the named terms in the pair potential now result

in a single-site quantity, tending to orient particles along e3 (homeotropic anchoring) when

γ < 0, or to keep them in the lattice plane for γ > 0 (planar anchoring).

For d = 3 the ground-state configuration of the dispersion model ∆jk corresponds to all

particles pointing along a lattice axis, with an energy W ∗
0

= −6γ2 per site, where the

asterisk means scaling by ε. On the other hand, in 2 − d the sign of γ plays a major role,

i.e. one finds














W ∗
0

= +2γ − 3γ2, γ < 0, uj ‖ e3, ∀j

W ∗
0

= −[γ + (9/2)γ2], γ > 0, uj ‖ e1, or uj ‖ e2, , ∀j
; (10)

in the cases considerered here, W ∗
0
(γ = +1) = −11/2, W ∗

0
(γ = +1/2) = −1.625; W ∗

0
(γ =

−1/2) = −1.75.
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ELASTIC INTERACTION MODELS

An important chapter of Liquid Crystal continuum theory involves the calculation of di-

rector patterns by minimizing the total elastic free energy for assigned values of the elastic

constants and under specific boundary conditions; a few analytical solutions are known

although, in general, numerical methods have been implemented, usually involving appro-

priate discretization schemes. In some cases, these configurations have been obtained by

numerical procedures where the elastic free energy density plays the same role as the overall

potential energy in a standard Metropolis Monte Carlo simulation. The interaction energies

or potentials used in these studies are short-ranged but, in general, not pairwise additive,

unless the three elastic constants are set to a common value, thus reducing the potential

model to the well-known Lebwohl-Lasher model (LL). In this context, a few years ago, it has

been noticed that one can construct, in different ways, a lattice model with pairwise additive

interactions, approximately reproducing the elastic free-energy density, where the parame-

ters defining the pair potential are expressed in terms of of elastic constants; for example, a

potential model of this kind, originally proposed by Gruhn and Hess, has been investigated

by Monte Carlo simulation, using a simple-cubic lattice and periodic boundary conditions;

more recently, the named potential model has been used for studying the Fréedericksz tran-

sition and the Schadt-Helfrich cell by simulation. The potential parameters are given by

linear combinations of elastic constants (see also below): strictly speaking the pair potential

does not depend on temperature (nor on density), whereas the elastic constants do, and

the additional arbitrariness in the choice is another aspect of the approximate nature of

the correspondence. Another approximate correspondence was defined and investigated by

simulation in 3 − d. we also present here the Mean Field (MF ) and Monte Carlo (MC)

simulation study of a 2 − d lattice system based on the latter “elastic models”, with the

same parameterization as used for their 3 − d counterparts.

We recall definitions of the two “elastic models”; model M1 [3,4] has the form

Φ = Φjk = λSjk + µ(ajakbjk −
1

9
) + νP2(bjk) + ρSjkP2(bjk). (11)
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By the argument outlined in the original paper, the four strength parameters λ, µ, ν, ρ

are defined by the following combinations of elastic constants, including a factor Λ, with

dimension of a length, for dimensional consistency:















































λ = 1

3
Λ(2K1 − 3K2 + K3)

µ = +3Λ(K2 − K1)

ν = 1

3
Λ(K1 − 3K2 − K3)

ρ = 1

3
Λ(K1 − K3).

. (12)

The model involves three elastic constants and four linearly dependent potential parameters,

connected by the condition

µ + 3(λ + ρ) = 0. (13)

Another possible correspondence had been studied, leading to the form M2:















































λ = +2

3
Λ(K1 − K2)

ν = −2

3
ΛK2

µ = Λ(−K1 + 2K2 − K3)

ρ = 0

, (14)

now involving only three linearly independent parameters; thus

Ψ = Ψjk = λSjk + µ(ajakbjk −
1

9
) + νP2(bjk). (15)

In Refs. [4,5], the chosen parameters were taken from the elastic constants of the com-

paratively simple and extensively studied nematogen 4,4’-dimethoxyazoxybenzene (para-

azoxyanisole, PAA) at 120 0C, which corresponds to a reduced temperature, T/TNI , of

0.963, as reported in the book by de Gennes and Prost, i.e.

K1 = 7 × 10−12 N, K2 = 4.3 × 10−12 N, K3 = 17 × 10−12 N. (16)

The calculated coefficients λ, µ, ν, ρ were rescaled by dividing by |ν|; thus potential model

M1 becomes
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Φ = ε
[

λSjk + µ(ajakbjk −
1

9
) + νP2(bjk) + ρSjkP2(bjk)

]

, (17)

λ = 0.79039, µ = −1.0611, ν = −1, ρ = −0.43668. (18)

A similar treatment had been applied to Eq. (15), so that the resulting pair potential M2

had the form

Ψ = ε
[

λSjk + µ(ajakbjk −
1

9
) + νP2(bjk)

]

, (19)

λ = 0.62791, µ = −5.3721, ν = −1. (20)

Notice that in both cases λ > 0, so that the effective single-site term tends to favour

homeotropic anchoring. Moreover, let v denote an arbitrary unit vector; the configuration

uk = ±v, ∀k, defines the ground-state for the Gruhn-Hess model (Eqs. (11) and (12)), whose

energy is −(2/3)Λ(K1 +K2 +K3) (or −2.4716 ε/particle with the present parameterization,

Eq. (18)); the value is independent of the orientation of v with respect to lattice axes,

and, as noted in Refs. [6], this degeneracy reflects the condition in Eq. (13). On the other

hand, at low but finite temperature, one may expect thermal fluctuations to select some

range of orientations (ordering from disorder, [7,8]); in the present case, this means v = e3

(homeotropic anchoring); the result was obtained by means of an approximate harmonic

(spin-wave) treatment, and is confirmed by simulation.

Let now v denote an arbitrary unit vector belonging to the lattice plane, i.e.

v = cos χe1 + sin χe2 (21)

the configuration uk = ±v, ∀k, defines the ground-state for the present model M2 (planar

anchoring), whose potential energy per particle is −(1/9)Λ(K1 + 4K2 + 7K3), or U∗
0

=

−5.5504 with the present parameterization (Eq. (18)); the value is independent of χ, i.e. of

the orientation of v with respect to two lattice axes. Here also, at low but finite temperature,

one may expect thermal fluctuations to select some range of orientations; in the present case,
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this means χ = 0, v = e1; the result was obtained by means of an approximate harmonic

(spin-wave) treatment carried out along the lines of Ref. [8], and is essentially confirmed by

simulation. Notice also that, in this case, the µ term is stronger than and prevails against

the λ term.

In 3 − d there are recognizable but not dramatic quantitative differences between LL, NS,

and the elastic models; in contrast, in 2 − d, the anisotropic interaction models may allow

the existence of orientational order at finite temperature, and produce different anchorings.
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TABLES

TABLE I. Transitional properties for different simulated models in 3−d; for LL the ratio

ΘMC/ΘMF is 0.850.

Potential model ΘMC ∆U∗
NI ∆SNI/R P

NI
2 P

NI
4 ΘMC/ΘMF

M1 1.368 ± 0.002 0.066 ± 0.005 0.048 ± 0.004 0.26 ± 0.01 0.045 ± 0.002 0.837

M2 2.380 ± 0.002 0.079 ± 0.006 0.033 ± 0.003 0.25 ± 0.01 0.041 ± 0.002 0.821

NS 2.238 ± 0.001 0.29 ± 0.02 0.13 ± 0.02 0.30 ± 0.01 0.09 ± 0.002 0.847
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MEAN FIELD TREATMENT FOR DISPERSION MODELS

A MF treatment can be worked out and leads to the following expressions for the free

energy and its gradients

A∗
MF = (g0X

2 + g2Y
2) − T ∗ log Ξ, (22)

∂A∗
MF

∂X
= 2g0X − g6

∫ F0dω

Ξ
,

∂A∗
MF

∂Y
= 2g2Y − g8

∫ F2dω

Ξ
, (23)

where

Ξ =
∫

exp[+βΩ]dω, Ω = (g4 + g6X)F0 + g8F2, β = 1/T ∗, (24)

F0 = C2,0(θ, φ) = P2(cos θ), F2 = Re[C2,2(θ, φ)] = (1/4)
√

6 sin2 θ cos(2φ) (25)

∫

. . . dω = (1/4π)
∫ π

0

sin θdθ
∫

2π

0

. . . dφ, (26)

and

g0 = +3γ2, g2 = +10γ2, g4 = −2γ, g6 = +6γ2, g8 = +20γ2. (27)

Here C2,m(θ, φ) denote modified spherical harmonics; X and Y are the two variational

parameters, to be determined at each temperature by minimizing A∗
MF ; the consistency

equations are obtained by setting its gradients to zero. In contrast to other more common

cases, uniaxial symmetry of the resulting ordered phase has not been assumed here, i.e. the

present general treatment deals with a uniaxial D∞h particle in a possibly biaxial phase;

notice also that only the g4 term actually depends on the sign of γ.

For each temperature over a fine grid, the free energy was minimized by numerical routines

using both the function and its gradients; the resulting variational parameters were then

used to calculate the energy

U∗
MF =

∂(βA∗
MF )

∂β
= −(g0X

2 + g2Y
2) − 2g0

g4

g6

X, (28)
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where the consistency equations were allowed for in the right-hand expression; the spe-

cific heat was calculated from U ∗
MF by numerical differentiation. Based on the variational

parameters, we also calculated the quantities

ηα = 〈P2(u · eα)〉; (29)

by the underlying symmetry, the second-rank ordering tensor is diagonal in the E−frame,

and the above quantities ηα are its eigenvalues; these quantities were suitably recombined

to give second-rank order parameters (see below).

A major difference between the two models emerged in the MF treatment, as could partly

be anticipated from the ground states, i.e. when γ = −1/2, we found X > 0, Y = 0 at all

temperatures, hence cylindrical symmetry around e3; on the other hand, when γ = +1/2,

we found a low-temperature region where Y > 0, i.e. biaxial behaviour.
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RESULTS AND COMPARISONS

M1 and DM(γ = −1/2)

Simulation results obtained for different observables showed practically no sample-size de-

pendence, so that only results obtained with the largest sample-size q = 120 were plotted

in most Figures; moreover the various quantities exhibit a smooth temperature dependence,

and show a rather good agreement between MF and simulation.

Simulation results for configurational heat capacity are plotted in Figs. (1). Simulation

results and MF predictions for P 2, P 4 are plotted in Fig. (2); another comparison of

predictions for the structural properties can be obtained by plotting P 4 versus P 2, thus

eliminating the explicit temperature dependences of the order parameters, as we have done

in Fig. (3), showing an even better agreement between MF and MC.

The SODF , calculated at T ∗ = 0.875 for q = 100, is plotted in Fig. (4), and shows the

expected maximum when cos θ is unity. To check the quantitative aspects of this, the first

four order parameters were calculated by convoluting the appropriate Legendre polynomials

with this distribution function, and found to be

P 2 = 0.383 ± 0.002,

P 4 = 0.096 ± 0.001,

P 6 = 0.018 ± 0.0001.

P 8 = 0.0025 ± 0.0001.

These results for P 2 to P 8 were used to construct a truncated expansion of the singlet

orientational distribution function, including terms up to P 8. An alternative route to f(θ)

is via the maximum entropy approach i.e. via the quantities

fME,2(θ) ∝ exp[c′
2
P2(cos θ)], (30)

fME,4(θ) ∝ exp[c′′
2
P2(cos θ) + c′′

4
P4(cos θ)]; (31)

Here the c parameters were determined by appropriate consistency constraints. We found
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c′
2

= 1.724

c′′
2

= 1.721, c′′
4

= +0.0053, c′′
4
/c′′

2
= +0.003.

Results of this fitting process are reported in Fig. (4), where log f(θ) is plotted versus

cos2 θ: simulation data, maximum-entropy estimates, and polynomial approximant, all come

to coincide to the resolution of the figure. The SODF of the 3 − d (NS) counterpart was

calculated at T ∗ = 2.225 [1], where we found P 2 = 0.423 ± 0.003, P 4 = 0.136 ± 0.001, and

a maximum-entropy analysis gave the result c′′
4
/c′′

2
= +0.086.

To summarize, in this case the potential model produces homeotropic anchoring, and its

behaviour is similar to the elastic potential model M1; the agreement between MF and

simulation is better here than there, possibly because of the role of thermal fluctuations,

producing “order from disorder” in that case.

A weak surface ordering surviving above the bulk Nematic-Isotropic transition temperature

has been observed experimentally for monolayers of 5CB (pentylcyanobiphenyl) in a suitable

porous matrix [13].

M2, DM(γ = +1/2), DM(γ = +1)

MF predicts the potential energy to evolve continuosly with temperature, with a discontin-

uous change of slope (a jump in CV ) taking place at ΘMF = 0.710; moreover, for T ∗ ≥ ΘMF

the minimization procedure returns Y = 0, η
1

= η
2
, ζ

3
= η

3
< 0, i.e. uniaxial orienta-

tional order with negative order parameter and director orthogonal to the lattice plane; for

T ∗ ≤ Θchs = 0.699 MF yielded ζ3 = η1 > 0, R22 > 0, i.e. biaxial order with director along

e1 and positive order parameter; between Θchs and ΘMF the three ηα were all different, and

ζ
3

= η
3

< 0; MF predicts a discontinuous change of order parameters across Θchs (although

with a rather weak discontinuity for P 4), but a continuous one across ΘMF .

Results for configurational heat capacity are plotted in Fig. (5); they show a rather weak

sample-size dependence, and a maximum, possibly a cusp, at T ∗ ≈ 0.47.

Simulation results and MF predictions for second- and fourth-rank ordering quantities are
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compared in Figs. (6), (7), and Fig. (8), where sample-size effects are examined.

These Figures show a low-temperature régime (T ∗ <∼ 0.46) where simulation results are

insensitive to sample size, ζ
3

= η
1

> η
2
, R22 > 0, i.e. system is biaxial with a positive order

parameter, and the main director is aligned along a lattice axis.

At higher temperatures, η1 and η2 start switching roles, ζ3 and its macrostep averages

fluctuate between positive and negative values; these fluctuations rather quickly reduce R22

to zero, whereas ζ
3
6= η

3
, and the change of P 2 from positive to negative values takes place

more slowly; on the other hand, η3 appears to evolve with temperature in a continuous and

monotonic fashion. At even higher temperatures (T ∗ >∼ 0.49 for q = 120), ζ3 = η3, η1 = η2,

i.e. the system becomes uniaxial with negative order parameter and director orthogonal

to the lattice plane. Notice that P 2 first decreases with increasing temperature, reaches a

negative minimum, and then slowly increases (decreasing in magnitude). Fig. (8) shows that

the transition region where P 2 changes from η1 to η3 recognizably shrinks upon increasing

sample size; a weaker sample-size dependence of simulation results in the transition region

(not reported here) has been observed for P 4.

Simulation evidence suggests a second-order transition, taking place between two differently

ordered phases, both exhibiting planar anchoring; the transition temperature is estimated

to be ΘMC = 0.471 ± 0.002, based on the behaviour of the specific heat; its uncertainty is

conservatively taken to be twice the temperature step used in the simulation.

MF predictions and simulation results appear to agree qualitatively, but in quantitative

terms, MF overestimates the transition temperature by some 50%.

The presence of different anchorings of the ordered phase, depending on the sign of γ, has

also been noted in Ref. [2] (Figs. (4c) and (5c)).
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Let us conclude by summarizing similarities and differences between various recently inves-

tigated nematogenic lattice models [9–12] associated with a 2 − d lattice and with nearest-

neighbour interactions. On the one hand, both the DM defined by γ = −1/2 and the

“elastic ” model M1 exhibit a rather similar behaviour, producing homeotropic anchoring,

with no evidence of a phase transition, and uniaxial order probably surviving at all finite

temperatures; moreover, MF predictions agree rather well with simulation results. On the

other hand, M2 exhibits a recognizable similarity with the DM ’s defined by γ = 1/2 and

γ = 1 (NS); here MF agrees qualitatively with simulation, but, un quantitative terms, it

significantly overestimates the transition temperature, roughly by the same amount (50%)

in the three cases.

The mild quantitative differences one observes in 3 − d between M1, M2, NS and LL

become far more pronounced qualitative ones in 2 − d, now involving existence or absence

of an ordered phase, as well as types of anchoring.
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TABLE II. Biaxial to uniaxial transition temperatures for for different simulated models in 2−d.

Potential model Θchs ΘMF ΘMC

DM(γ = +1/2) 0.699 0.710 0.471 ± 0.002

DM(γ = +1) 2.573 2.592 1.780 ± 0.004

M2 2.6553 2.6618 1.71 ± 0.01
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FIGURES

FIG. 1. γ = −1/2, configurational specific heat: MF prediction (continuous curve), and sim-

ulation results obtained with different sample sizes: circles: q = 40; squares: q = 60; triangles

q = 80; diamonds: q = 100; crosses: q = 120; the associated statistical errors, not shown here,

range between 1 and 5 %.

FIG. 2. γ = −1/2, results for long-range order parameters. Discrete symbols are are used

for simulation results, obtained with q = 120: P 2 (circles); P 4 (squares). Continuous line: MF

prediction for P 2; dashed line: MF prediction for P 4.

FIG. 3. γ = −1/2, plot of P 4 versus P 2: simulation results (circles, q = 120), and MF

prediction (continuous curve); simulation results were taken between T ∗ = 0.4 and T ∗ = 1.2;

vertical dotted lines mark on the MF curve the points corresponding to the following temperatures,

right to left: 0.4, 0.45, 1.2, 1.3.

FIG. 4. γ = −1/2, simulation results for the SODF at T ∗ = 0.875; relative statistical errors on

f(θ) range up to 0.2%; second-order and fourth-order maximum-entropy estimates of the SODF ,

as well as its eighth-order polynomial approximant (see text) are indistinguishable from simulation

results to the resolution of the figure.

FIG. 5. γ = +1/2, configurational specific heat: MF prediction (continuous curve), and sim-

ulation results obtained with different sample sizes: circles: q = 40; squares: q = 60; triangles

q = 80; diamonds: q = 100; crosses: q = 120; the associated statistical errors, not shown here,

range between 1 and 5 %.
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FIG. 6. γ = +1/2, eigenvalues of the second-rank ordering tensor. Discrete symbols are are

used for simulation results, obtained with sample size q = 120: circles: η1; squares: η2; triangles:

η3. Other curves are the corresponding MF predictions: continuous line: η1; dashed line: η2,

dotted line: η3. The vertical dashed-dotted line marks the temperature Θchs = 0.699 where MF

predicts the eigenvalue with the largest magnitude to change from positive to negative sign; see

also the text.

FIG. 7. γ = +1/2, second and fourth-rank order parameters. Discrete symbols are are used

for simulation results, obtained with sample size q = 120: circles: P 2; squares: R22; triangles: P 4.

The other curves are the corresponding MF predictions: continuous line: P 2; dashed line: R22;

dotted line: P 4; the vertical dashed-dotted line has the same meaning as in the previous Figure.

FIG. 8. γ = +1/2, results for second-rank order parameters in the transition region. Discrete

symbols are are used for simulation results, obtained with different sample sizes: crosses: P 2 for

q = 40; stars: R22 for q = 40; circles: P 2 for q = 80; squares: R22 for q = 80; triangles: P 2 for

q = 120; diamonds: R22 for q = 120. The other curves are the corresponding MF predictions:

continuous line: P 2; dashed line: R22.
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