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Molecular Biaxiality

molecular tensors

We think of the molecules as being described by a biaxial tensor that

can be decomposed into two traceless, irreducible orthogonal compo-

nents.

q := m ⊗m −
1

3
I

b := e ⊗ e − e⊥ ⊗ e⊥

m long molecular axis

m , e , e⊥ axes of any molecular polarizability

tensor

e⊥
e

m
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Interaction Potential

The most general quadratic pair-potential was introduced by Straley

(1974)

V = −U0

{

ξq · q′ + γ
(

q · b′ + b · q′
)

+ λb · b′
}

U0 typical interaction energy

ξ, λ, γ dimensionless parameters

alternative representation

V = −U0{−(λ+ 1

3
ξ) + (ξ − λ)(m ·m ′)2

+2(λ+ γ)(e⊥ · e ′

⊥)2 + 2(λ− γ)(e · e ′)2}

Romano (2004), Longa (2005)
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Stability

The local stability of the ground state of V , where all three molecular

axes are equally oriented, is guaranteed by the following conditions

• ξ = 1 λ > 0 λ− |2γ| + 1 > 0

• ξ = −1 λ− |2γ| − 1 > 0
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symmetric attraction

For ξ = 1 and λ = γ2 the interaction potential V can be given the

dispersion form

V = −U0(q + γb) · (q′ + γb′)

superposition

By superimposing

V1 = −U1(q + γ1b) · (q′ + γ1b
′)

V2 = −U2(q + γ2b) · (q′ + γ2b
′)

we obtain

V = V1 + V2 = −U0 {q · q′ + γ (q · b′ + b · q′) + λb · b′}

where

U0 = U1 + U2, γ =
U1γ1 + U2γ2

U1 + U2

, λ =
U1γ

2

1
+ U2γ

2

2

U1 + U2
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The point (γ, λ) lies on the segment joining the points (γ1, λ1) and

(γ2, λ2), within the dispersion parabola

λ > γ2
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potential extrema

The stability region can be further characterized by identifying all

extrema of V

• V attains its absolute minimum at (q,b) = (q′,b′)

• (q,b) and (q′,b′) have one and the same eigenframe at all

extrema of V

7



maxima chart

strongest attraction

The inner triangle, where V attains its maxima when all corresponding

molecular axes are mutually orthogonal, is interpreted as the region of

strongest molecular attraction.
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mild repulsion

The interactions within the stability region that fall outside the dis-

persion parabola are called mildly repulsive.
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Symmetry

V -invariant transformations

V = −U0{ξ
∗q∗ · q∗′ + γ∗(q∗ · b∗′ + q∗′ · b∗) + λ∗b∗ · b∗′}

e = e∗

ξ∗
1

= 9λ+ 6γ + 1

γ∗
1

= 1 − 3λ+ 2γ

λ∗
1

= 1 + λ− 2γ

e⊥ = e∗

⊥

ξ∗
2

= 9λ− 6γ + 1

γ∗
2

= 1 − 3λ− 2γ

λ∗
2

= 1 + λ+ 2γ

m = m∗

ξ∗
3

= 1

γ∗
3

= −γ

λ∗
3

= λ

Longa(2005), De Matteis (2005)
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rescaling

Provided that ξ∗ 6= 0, we can set either ξ∗ = 1 or ξ∗ = −1, depending

on whether ξ∗ > 0 or ξ∗ < 0. Correspondingly, the pairs (γ∗
1
, λ∗

1
) and

(γ∗
2
, λ∗

2
) become

γ∗
1

=
1 − 3λ+ 2γ

9λ+ 6γ + 1
λ∗

1
=

1 + λ− 2γ

9λ+ 6γ + 1

γ∗
2

=
1 − 3λ− 2γ

9λ− 6γ + 1
λ∗

2
=

1 + λ+ 2γ

9λ− 6γ + 1
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symmetry properties

We denote by τ1, τ2, and τ3 the scaled transformations. They enjoy

the following properties:

• τi ◦ τi = 1

• τi ◦ τj ◦ τk = 1 for i 6= j 6= k

• lines 1 + λ+ 2γ = 0, 1 + λ− 2γ = 0, and γ = 0 are conjugated

• parabola λ = γ2 is self-conjugated

De Matteis (2005)
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conjugation charts
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Ordered Phases

order tensors

Q := 〈q〉 B := 〈b〉

〈·〉 ensemble average

We assume that both Q and B have one and the same eigenframe

{ex, ey, ez}.

conjugation

The conjugations involving q and b are clearly conveyed on the corre-

sponding order tensors. Conjugated macroscopic states are physically

equivalent.
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general representation

The most general representation of a completely biaxial state employs

four order parameters Straley (1974):

Q = S

(

ez ⊗ ez −
1

3
I

)

+ T (ex ⊗ ex − ey ⊗ ey)

B = S′

(

ez ⊗ ez −
1

3
I

)

+ T ′ (ex ⊗ ex − ey ⊗ ey)
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terminology

• uniaxial phase occurs whenever both Q and B are uniaxial:

T = T ′ = 0

• phase biaxiality compatible with cylindrical molecules oc-

curs when S′ = T ′ = 0

• intrinsic biaxiality emerges when T ′ 6= 0.
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order parameter manifold

Let (ϑ, ϕ, ψ) be the Euler angles that represent the rotation taking

{ex, ey, ez} into {m , e , e⊥}.

S = 3

2
〈cos2 ϑ− 1

3
〉

− 1

2
≤ S ≤ 1

T = 1

2
〈sin2 ϑ cos 2ϕ〉

− 1

3
(1 − S) ≤ T ≤ 1

3
(1 − S)

S′ = 3

2
〈sin2 ϑ cos 2ψ〉

−(1 − S) ≤ S′≤ (1 − S)

T ′ = 1

2
〈
(

1 + cos2 ϑ
)

cos 2ϕ cos 2ψ − 2 cosϑ sin 2ϕ sin 2ψ〉

−1 ≤ T ′ ≤ 1
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Phase Diagrams

Within a mean-field approximation the following diagram has recently

been established for γ = 0.
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educated guesses

Preliminary numerical explorations suggest that within the attractive

parabola there are only two qualitatively different phase diagrams.
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