Soft Matter Mathematical Modelling

Cortona 12th-16th September 2005

Biaxial Nematics

Fact, Theory and Simulation

Geoffrey Luckhurst

School of Chemistry

University of Southampton

Fact

The elusive biaxial nematic

Claims to discovery

Recognition of the biaxial nematic

Biaxial Nematic N_B molecular organisation

Macroscopic definition

Frank

Symmetry of average tensorial property,T,

such as the dielectric susceptibility or the quadrupolar splitting in NMR is biaxial.

Principal_components

$$\tilde{\eta} = 3(\tilde{T}_{XX} \neq \tilde{T}_{YY})/(2\tilde{T}_{ZZ} - (\tilde{T}_{XX} + \tilde{T}_{YY}))$$
(n.b. $\tilde{T}_{XX} = \tilde{T}_{YY} \neq \tilde{T}_{ZZ}$ for N_U)
$$\tilde{\eta} = 3(\tilde{T}_{XX} - \tilde{T}_{YY})/(2\tilde{T}_{ZZ} - (\tilde{T}_{XX} + \tilde{T}_{YY}))$$

$$\tilde{\eta} = 3(\tilde{T}_{XX} - \tilde{T}_{YY})/(2\tilde{T}_{ZZ} - (\tilde{T}_{XX} + \tilde{T}_{YY}))$$

The directors, n, l, m are identified with the principal axes of

Lyotropic Biaxial Nematic

(potassium laurate (KL), 1-decanol, D₂O)

L J Yu, A Saupe, Phys. Rev. Lett., 1980, 45, 1000-1003

Phase diagram

Identifying a Biaxial Nematic

F P Nicoletta, G Chidichimo, A Golemme, P Picci, *Liq.Cryst.*, 1991, **10**, 665-674

Another lyotropic biaxial nematic (potassium laurate, decyl ammonium chloride, D₂O)

The primary ²H NMR data

90° rotation spectrum Spinning spectrum Static spectrum Mesophase Discotic (N_p) 1600 Hz Cylindric (N_c) Biaxial (N_{Pe}) $\tilde{n} = 0.51$ Biaxial (Nn.) $\tilde{n} = 1$ Biaxial (N_{Pe}) ñ=0.68

Phase transitions in a biaxial nematic

Thermotropic Biaxial Nematics?

Thermotropic Biaxial Nematics 2004

V-shaped molecules

L A Madsen, T J Dingemans, M Nakata, and E T Samulski, Phys. Rev. Lett., 2004, 92, 145505

Biaxiality in \tilde{q} $\tilde{\eta} = 0.11$

n.b. for lyotropic biaxial nematics $\tilde{\eta} \approx 0.7 - 1.0$

Thermotropic Biaxial Nematics 2005

Tetrapodes:

J L Figueirinhas, C Cruz, D Filip, G Feio, A C Ribeiro, Y Frère and T Meyer, G H Mehl *Phys. Rev. Lett.*, 2005, **94**, 107802

Tetrapodes: the NMR Evidence

Molecular field approach

Landau approach

Molecular Field Theory

General Notation

Single molecule potential

$$U = -\sum u_{2mn} (1 + \delta_{m2}) (1 + \delta_{n2}) (1 + \delta_{p2}) \langle R_{pm}^2 \rangle R_{pn}^2 (\Omega)$$

Symmetry adapted functions

Dependence on Euler angles

$$R_{00}^{2}(\Omega) = (3\cos^{2}\beta - 1)/2$$

$$R_{02}^{2}(\Omega) = \sqrt{\frac{3}{8}}\sin^{2}\beta \cos^{2}\gamma$$

$$R_{20}^{2}(\Omega) = \sqrt{\frac{3}{8}}\sin^{2}\beta \cos^{2}2\alpha$$

$$R_{22}^{2}(\Omega) = \frac{1}{2}\left(\frac{1}{2}(1 + \cos^{2}\beta)\cos 2\alpha \cos 2\gamma - \cos\beta \sin 2\alpha \sin 2\gamma\right)$$

Order parameters are averages of R^2_{mn}

Strength parameters
$$u_{200} \quad u_{220} (\equiv u_{202}) \quad u_{222}$$

Orientational Order Parameters

Limit

Biaxial molecule in biaxial phase major $S_{zz}^{ZZ} = \langle (3l_{zZ}^2 - 1)/2 \rangle$

molecular biaxial $S_{xx}^{ZZ} - S_{yy}^{ZZ} = \langle 3(l_{xZ}^2 - l_{yZ}^2)/2 \rangle$

phase biaxial $S_{zz}^{XX} - S_{zz}^{YY} = \langle 3(l_{zx}^2 - l_{zy}^2)/2 \rangle$

phase biaxial $(S_{xx}^{XX} - S_{xx}^{YY}) - (S_{yy}^{XX} - S_{yy}^{YY}) = <3\{(l_{xx}^{2} - l_{xy}^{2}) - (l_{yx}^{2} - l_{yy}^{2})/2\} >$ Axes: molecular xyz and space XYZ

Molecular Field Theory

N Boccara, R Medjani, L de Seze, J.Phys., 1977, 38, 149-151

Bounds on ϵ of 0 and 3 correspond to uniaxial molecules $\epsilon = 1$ is the maximum biaxiality giving the Landau point

Molecular Field Theory

A M Sonnet, E G Virga and G E Durand, Phys. Rev., E, 2003, 67, 061701

Phase Diagram

Uniaxial nematic of uniaxial molecules

Key order parameter for nematic-isotropic transition: S $A = A_0 + BS^2 + CS^3 + DS^4$

Free energy expansion of invariants

Assumption:

$$B = b(T - T^{\iota})$$

Dependence on S and magnitude of other coefficients related to experimental quantities

Biaxial phase of biaxial molecules Order parameters Major

$$S = \langle 3\cos^2\beta - 1/2 \rangle$$

Molecular biaxial

$$T = \langle \sin^2 \beta \, \cos^2 \gamma \rangle$$

Phase biaxial

$$U = \langle \sin^2 \beta \, \cos 2 \, \alpha \rangle$$

$$=\langle R_{00}^2 \rangle$$

$$=\sqrt{\frac{8}{3}}\langle R_{02}^2\rangle$$

$$=\sqrt{\frac{8}{3}}\langle R_{20}^2\rangle$$

Phase / molecular biaxial

$$V = \langle \frac{1}{2} (1 + \cos^2 \beta) \cos 2\alpha \cos 2\gamma - \cos \beta \sin 2\alpha \sin 2\gamma \rangle = 2 \langle R_{22} \rangle$$

Uniaxial nematic

$$S \neq 0 \qquad T \neq 0 \qquad \qquad U = 0 \qquad V = 0$$

Biaxial nematic

$$S \neq 0 \qquad T \neq 0 \qquad \qquad U \neq 0 \qquad V \neq 0$$

D W, Allender, M A Lee, N Hafiz, *Mol. Cryst. Liq. Cryst.*, 1985, **124**, 45-52 Free energy

Free energy (continued)

$$\begin{split} & \dots + E_1 \big(S^2/2 + T^2 + U^2 + V^2/18 \big)^3 \\ & + E_2 \big(S^2/2 + T^2 + U^2 + V^2/18 \big) \big(SV/3 - 2TU \big)^2 \\ & + E_3 \big(S^3/4 - ST^2/2 - 3SU^2/2 + TUV + SV^2/12 \big)^2 \\ & + E_4 \big(S^2V/4 - U^2V/2 - T^2V/2 - 3STU + V^3/108 \big)^2 \\ & + E_5 \big(\dots \big) \end{split}$$

Assumptions

A is linear in temperature ~ ($T - T^*$)

B, C_1 , C_2 , D_1 , D_2 , E_1 , E_2 , E_3 , E_4 , E_5 are temperature independent.

Landau Theory for Biaxial Nematics

Phase diagram

$$C_1 = 0, C_2 = 1, D_1 = 1,$$

 $D_2 = 1, E_1 = 1, E_2 = 1, E_3$
 $= 1, E_4 = 1, E_5 = -7$

Landau Theory for Biaxial Nematics

Problems:

- (b) Large number of unknown parameters
- (c) Single characteristic temperature, might have expected more
- (d) Four nematic phases are predicted

Phase	Order	Parameter
	0	I
N _{U1}	1	S
N _{U2}	2	S, T
N _B	2	S, U
N _B *	4	S, T, U, V

Strategy of Katriel et al.

J Katriel, G F Kventsel, G R Luckhurst, T J Sluckin, Liq. Cryst., 1986, 1, 337-355

(1) Free energy
$$A = -\frac{1}{2}u_{200} \langle P_2 \rangle^2 + k_B T \int f(\beta) \ln 2 f(\beta) \sin \beta d\beta$$
$$= U - TS$$

(4) Order parameter
$$\langle P_2 \rangle = \int P_2 (\cos \beta) f(\beta) \sin \beta d\beta$$

$$S = S[f(\beta)]$$

But *A* is not yet a function of OP !

Strategy of Katriel et al.

 $A = k_B T \int f(\beta) \ln 2 f(\beta) \sin \beta d\beta - \frac{1}{2} u_{200} \langle P_2 \rangle^2 = U - TS$ Maximise entropy term subject to given OP

- (1) $f(\beta)$ a function of auxiliary parameter η $f(\beta) = \frac{1}{Z(\eta)} \exp \eta P_2(\cos \beta)$
- (3) Partition function $Z(\eta) = \int \exp \eta P_2(\cos \beta) \sin \beta d\beta$ (5) OP a function of η $\langle P_2 \rangle = \frac{\partial \ln Z(\eta)}{\partial \eta}$

A is now a function of η and OP

Strategy of Katriel et al.

$$A = k_B T \int f(\beta) \ln 2 f(\beta) \sin \beta d\beta - \frac{1}{2} u_{200} P_{2^2}^{-} = U - TS$$
(1) Invert equation:

$$\overline{P}_2 = \frac{\partial \ln Z(\eta)}{\partial \eta}$$
(3) A was a function of
OP and η
Expand $\langle P_2 \rangle$ in a power
series in η
Invert power series to required order

(6) A is now a function of Expand A in power series in OP OP

$$A = A\left(\langle P_2 \rangle\right)$$

Result

$$A = \frac{5}{2} k_{B} \left(T - T^{i} \right) \left\langle P_{2} \right\rangle^{2} - \frac{25}{21} k_{B} T \left\langle P_{2} \right\rangle^{3} + \frac{425}{196} k_{B} T \left\langle P_{2} \right\rangle^{4} + \dots$$

$$T^{\bullet} = u_{200}^{\bullet} / 5 k_{B}^{\bullet}$$

Landau Theory for Biaxial Nematics

A molecular field approach

Energy

$$U_{N} = \frac{1}{2} \sum u_{2mn} (1 + \delta_{m2}) (1 + \delta_{n2}) (1 + \delta_{p2}) \langle R_{pm}^{2} \rangle \langle R_{pn}^{2} \rangle$$
$$U_{N} = \frac{1}{2} \left(u_{200} (S^{2} + 2U^{2}) + 4u_{220} (ST + 2UV) + 4u_{222} (T^{2} + 2V^{2}) \right)$$

n.b. expansion coefficients are components of supertensor and not scalars

Simulation

Rod-Disc Mixtures

Rod-Disc Dimers

Flexibility

Mixtures of rods and discs

The phase diagram

P Palffy-Muhoray, J R Bruyn, D A Dunmur, *J.Chem.Phys.*, 1985, **82**, 5294-5295

Rod – Disc Dimers

I D Fletcher, G R Luckhurst, *Liq.Cryst.*, 1995, **18**, 175-183

J J Hunt, R W Date, B A Timimi, G R Luckhurst, D W Bruce, *J.Am.Chem.Soc.*, 2001, **123**, 10115-10116

P H J Kouwer, G H Mehl., Mol. Cryst. Liq. Cryst., 2003, 397, 301-316

The Phase Behaviour of Rod-Disc Dimers

M A Bates, G R Luckhurst, PCCP, 2005, 7, 2821-2829

The Lebwohl-Lasher lattice Model

Anisotropic interactions

$$U_{ij}^{RR} = -\boldsymbol{\epsilon}_{RR} P_2(\boldsymbol{r}_i \cdot \boldsymbol{r}_j)$$
$$U_{ij}^{RD} = \boldsymbol{\epsilon}_{RD} P_2(\boldsymbol{r}_i \cdot \boldsymbol{d}_j)$$
$$U_{ij}^{RD} = \boldsymbol{\epsilon}_{RD} P_2(\boldsymbol{d}_i \cdot \boldsymbol{r}_j)$$
$$U_{ij}^{DD} = -\boldsymbol{\epsilon}_{DD} P_2(\boldsymbol{d}_i \cdot \boldsymbol{d}_j)$$

Torsional potential

$$U_{tors}^{RD} = \boldsymbol{\epsilon}_a \boldsymbol{P}_2 \left(\boldsymbol{r}_i \cdot \boldsymbol{d}_i \right)$$

 $\epsilon_{a} > 0$ symmetry axes orthogonal $\epsilon_{a} < 0$ symmetry axes parallel

Parameterisation

Scaling Parameter

$$\epsilon_{RR}$$
 e.g. $T^{i} = k_{B}T/\epsilon_{RR}$

Relative anisotropy

 $\epsilon^{\iota} = \epsilon_{DD} / \epsilon_{RR}$

Controls the molecular biaxiality

Geometric mean or Berthelot approximation

$$\boldsymbol{\epsilon}_{RD} = \left(\boldsymbol{\epsilon}_{DD} \boldsymbol{\epsilon}_{RR}\right)^{1/2}$$

Scaled torsional strength

$$\epsilon_a^i = \epsilon_a / \epsilon_{RR}$$

Rigid Rod-Disc Dimer

Phase diagram as function of relative anisotropy $(\equiv \epsilon_{DD}^{D} / \epsilon_{RR})$

Flexible Rod-Disc Dimers

Phase diagram for different torsional strengths $\boldsymbol{\epsilon}_{a}^{i} (\equiv \boldsymbol{\epsilon}_{a} / \boldsymbol{\epsilon}_{RR})$

Flexible Rod-Disc Dimers

Orientational order parameters

$$Q_{AA}^{R} \quad \text{and} \quad Q_{AA}^{D} \qquad \left[\equiv S_{XX}^{\alpha}, S_{YY}^{\alpha}, S_{ZZ}^{\alpha} \right] \qquad \alpha = \text{R or D}$$

$$\epsilon_{a}^{i} = -7 \qquad \epsilon^{i} = 2.0 \qquad \epsilon^{i} = 1.75$$

Acknowledgements

Fact

Gerd Kothe (Freiburg) Jacques Malthete (Paris) Klaus Praefcke (Berlin) Bakir Timimi (Southampton)

Theory

Tim Sluckin (Southampton) Ken Thomas (Southampton)

Simulation

Martin Bates (York) Silvano Romano (Pavia)