An ellipsoidal drop model for single drop dynamics with non-Newtonian fluids

Francesco Greco Istituto per i Materiali Compositi e Biomedici– CNR Piazzale Tecchio 80, Napoli, ITALIA

Pier Luca Maffettone Dipartimento di Scienza dei Materiali e Ingegneria Chimica Corso Duca degli Abruzzi 24, Torino, Italia

	Motivation	
		Motivation
	 Systems consisting of two immiscible substances are important in different fields: 	Outline
	 Polymer blends 	Basics
Ð	– Food	Single drop
I Modellin	 Biomedics Cosmetics. 	The model
		Shear Flow
natica	 Processing implies interactions between morphology and rheology 	Elong. Flow
ther		Break-up
er Ma 2005	• The properties of the final product depend on the properties of the constituents and on the morphology of	Startup Shear
Matton Dna 2	the system.	Relaxation
Soft Cortc		Conclusions
	Utracki, Polymer Alloys and Blends, 1989 Vinckier et al., J. Rheol., 40, 613, 1996.	2/19

Motivation

- Motivation: Description of the shape of the dispersed • phase, and its evolution under the action of a wellcontrolled flow field.
- FOCUS: the effects of viscoelasticity of the fluid • components on the shape dynamics of isolated droplets

Motivation

Outline Basics Single drop The model Shear Flow Elong. Flow Break-up

Startup Shear

Relaxation

Conclusions

3/19

Outline

the state

			Motivation
БL	٠	Basics	Outline
	•	 Blends, Morphology, Rheology The single drop problem 	Basics
	•	The model	Single drop
ellir		 Viscoelastic Liquids 	The model
lod	٠	Steady flows	
al N	٠	Breakup	Shear Flow
atic	٠	Startup of shear	Elong. Flow
r Mathem 305	•	Relaxations	Break-up
	•	Conclusions	Startup Shear
Matte ona 20			Relaxation
Soft			Conclusions
			4/19

Basics

- Hypothesis: dilute systems, consisting of drops dispersed in a matrix.
- Globular morphology

- In dilute conditions the deformation of the drops and the stress response are only slightly affected by the hydrodynamic interactions between droplets.
 - A good description of the deformation of a single drop simmersed in a matrix subjected to flow is of value.

Motivation

Outline

Basics

Single drop

The model

Shear Flow

Elong. Flow

Break-up

Startup Shear

Relaxation

Conclusions

The single drop problem

Motivation

Outline

Basics

Single drop

The model

Shear Flow

Elong. Flow

Break-up

Startup Shear

Relaxation

Conclusions

6/19

• The drop is assumed to be **always** an ellipsoid:

$$\mathbf{Q}(t):\mathbf{rr}=\mathbf{r}_0^2$$

- r_0 is the radius of the drop at equilibrium (spherical).
- r is the generic position vector of a point on the actual drop surface.
- **Q**(t) is a second rank symmetric and positive definite, and time dependent tensor that describes the ellipsoidal surface.
- The drop dynamics is dictated by relaxation effects and deformation induced by flow.

Motivation

Outline

Basics

Single drop

The model

Shear Flow

Elong. Flow

Startup Shear

Break-up

Relaxation

Conclusions

• From dimensional analysis of the non-Newtonian case: six nondimensional parameters

$\lambda = \frac{\eta_{\rm D}}{\eta}$	$Ca = \frac{\eta r_0 \nabla v }{\sigma}$
$\mathbf{N} = \frac{\Psi_1 \mathbf{r}_0 \left \nabla \mathbf{v} \right ^2}{\sigma} = \mathbf{p} \mathbf{C} \mathbf{a}^2$	$\Psi = -\Psi_2/\Psi_1$
$N_{\rm D} = \frac{\Psi_{\rm 1D} r_0 \left \nabla \mathbf{v} \right ^2}{\sigma} = p_{\rm D} C a^2$	$\Psi_{\rm D} = -\Psi_{\rm 2D}/\Psi_{\rm 1D}$

N: ratio between the elastic stresses and the interfacial

p: ratio of a constitutive relaxation time and the interfacial

Motivation Outline Basics Single drop The model Shear Flow Elong. Flow Break-up **Startup Shear** Relaxation Conclusions 8/19

Soft Matter Mathematical Modelling Cortona 2005

relaxation time.

stress.

Motivation The evolutive equation for the tensor Q(t) is Outline dQ $-(\mathbf{\Omega} \cdot \mathbf{Q} - \mathbf{Q} \cdot \mathbf{\Omega}) + a(\mathbf{D} \cdot \mathbf{Q} + \mathbf{Q} \cdot \mathbf{D}) + b\mathbf{D} : \mathbf{Q}\mathbf{I} + c\mathbf{D}Tr(\mathbf{Q}) = f_1(\mathbf{Q} - g\mathbf{I})$ **Basics** dt Single drop **D**: the deformation rate tensor; Ω : vorticity tensor; at infinity. The model Shear Flow LHS expresses the most general symmetry preserving time ۲ derivative of tensor Q. Elong. Flow Break-up a, b, c are arbitrary numbers. Startup Shear A generalization of the analogous equation proposed for Relaxation the Newtonian case. Conclusions Astarita & Marrucci, Principles of non-Newtonian Fluid Mechanics, 1974 9/19 Maffettone and Minale, JNNFM, 1998.

Dimensionless model: $\frac{d\mathbf{Q}}{dt} + Ca\left[-\left(\mathbf{\Omega}\cdot\mathbf{Q} - \mathbf{Q}\cdot\mathbf{\Omega}\right) + \mathbf{a}\left(\mathbf{D}\cdot\mathbf{Q} + \mathbf{Q}\cdot\mathbf{D}\right) + \mathbf{c}\mathbf{D}\mathrm{Tr}\left(\mathbf{Q}\right)\right] = \mathbf{f}_{1}\left(\mathbf{Q} - g\mathbf{I}\right)$ Volume preservation (det \mathbf{Q} =cost) \Rightarrow b=0 and: $3 - \operatorname{Ca} \frac{\mathbf{c}}{\mathbf{f}_1} I_{\mathbf{Q}} \mathbf{D} : \mathbf{Q}^{-1}$ The coefficients a, c, f_1 are assumed to depend on λ , Ψ , $\Psi_{\rm D}$, p and p_D. The mathematics of the model is now completely specified The model is nonlinear.

Motivation Outline **Basics** Single drop The model Shear Flow Elong. Flow Break-up

Startup Shear

Relaxation

Conclusions

10/19

۲

- The non-Newtonian model is so built as to recover the steady state in the small deformation limit.
- The phenomenological parameters of the model are sindetermined in the small deformation limit only.
- Thereafter, the model is used to obtain predictions for whatever deformation of the drop, and both at steady state and in time dependent situations.
- First order Ca (steady state and dynamics):

$$f_1 = -\frac{40(\lambda + 1)}{(2\lambda + 3)(19\lambda + 16)}, \qquad 2a + 3c = \frac{10}{(2\lambda + 3)}$$

Outline

Motivation

Basics

Single drop

The model

Shear Flow Elong. Flow

Break-up

Startup Shear

Relaxation

Conclusions

Soft Matter Mathematical Modelling Cortona 2005

	Motivation
1) $2Tf_1 + 2a + 3c = 0$	Outline
2) $s_4 f_1 = -T$ \leftarrow Newtonian (p=p_D=0) dynamics at order Ca	Basics
3) $s_2 f_1 - 2T a = 0$	Single drop
4) $(9s_3 + T^2)f_1 + 4Ta - 3Tc = 0$	The model
	Shear Flow
• The linear system is overdetermined. Thus, we arbitrarily	Elong. Flow
– Eq 1 and 2 always fulfilled to recover the Newtonian Ca-limit	Break-up
correctly.	Startup Shear
 Two systems with Eqs. 1,2,3 and with Eqs. 1,2,4 solved, and the two solutions averaged. 	Relaxation
	Conclusions
	13/19

Allos.

Predictions – Shear flow

Experiments
 Non-Newtonian model
 —Newtonian model.

Soft Matter Mathematical Modelling Cortona 2005

Predictions – Shear flow

Soft Matter Mathematical Modelling Cortona 2005

15/19

Predictions – Elongational flow

- Experiments $\lambda = 1.08$: Ofully Newtonian; \square p=2.95, $\Psi = 0$, p_D=0; Basics
 - ▲ p=4.38, Ψ =0, p_D=0; ▼ p=7.16, Ψ =0, p_D=0
- Solid line: Non-Newtonian model

Motivation

Single drop

Outline

Predictions – Break-up

Conclusions

- The phenomenological model describes drop deformation ۲ and orientation under the action of a generic flow field imposed "at infinity" was presented.
- The model applies to blends consisting in Newtonian as • well as non-Newtonian components.
- The model parameters are determined once and for all in the small deformation limit, by comparison with existing analytic solutions. Thus, no adjustable parameter appears in the model.
- Model predictions agree with experimental results at steady state.

Soft Matter Mathematical Modelling Cortona 2005

Motivation

Outline

Basics

Single drop

The model

Shear Flow

Elong. Flow

Break-up

Startup Shear

Relaxation

Conclusions

Conclusions

 Break-up predictions are in qualitative agreement with experimental results.

 In the case of viscoelastic phases, the description of transients is accurate only for "low elasticities".

 The model should be improved to adequately describe the dynamics at "large elasticities". No asymptotic limit, however, is available so far.

