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Introduction

The molecular ordering of liquid
crystals can be affected by the
boundaries of submerged
particles.

The particles can experience forces and torques due to
the change in ordering.
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• The cylinder and the wall both prescribe homeotropic
alignment on the liquid crystal molecules.



Energy

• To describe alignment of molecules on the mesoscopic
scale we employ Landau -de Gennes theory employing a
full second-rank tensor Q

∼
.

• Q
∼
is traceless, rank 2, with eigenvalues in range

[
−

1

3
,
2

3

]
.

• When two eigenvalues are equal, Q
∼

= s

(
n∼ ⊗ n∼ −

1

3
I

)
.

s ∈
[
−

1

2
, 1
]
is the scalar order parameter.

• Three distinct eigenvalues:

Q
∼

= s1 e∼1 ⊗ e∼1 + s2 e∼2 ⊗ e∼2 − (s1 + s2)e∼3 ⊗ e∼3.



An invariant measure of biaxiality is given by

β2 = 1 − 6
(tr Q

∼
3)

2

(tr Q
∼

2)
3.

This parameter ranges in [0, 1] and vanishes precisely
for all uniaxial states of Q

∼
.



• For temperature T < TNI, the state naturally preferred
by a nematic comprising cylindrical molecules would be
uniaxial.

• We adopt the bulk potential

fb(Q∼) =
A

2
tr Q

∼
2 −

B

3
tr Q

∼
3 +

C

4
(tr Q

∼
2)2.

A = a(T − T ∗) where a is a positive constant,

T ∗ < TNI is the supercooling temperature,

B and C are positive scalars.

• Both relative and absolute minimizers of fb satisfy β2 = 0.



• When the tensor field Q
∼
is not uniform in space, the free

energy W per unit volume is

W =
L

2
|∇Q

∼
|2 + fb(Q∼),

where elastic constant L(> 0) is independent of
temperature.

• The total free energy stored in B,

F(B) =
∫

B
W dV.



• In the absence of body torques exerted by external
causes, an equilibrium configuration for F(B) satisfies

div T(E) = 0∼ ,

where
T(E) = WI − ∇Q

∼
�

∂W

∂∇Q
∼(

∇Q
∼

�
∂W

∂∇Q
∼

)
ij

= Qhk,i
∂W

∂Qhk,j
.

• T(E) is the form of Ericksen's stress tensor. It represents
the distribution of contact forces in B.



• For a body P submerged in B, the total force F (P)
transmitted by the liquid crystal through the boundary ∂P
is

F (P) =
∫

∂P
T(E) ν∼ dS.

• Distribution of contact torques is described by the couple
stress tensor

Lij = 2εiklQkm
∂W

∂Qml,j
.

• The total torque transmitted on a submerged body P by
the surrounding liquid crystal is

M(P) =
∫

∂P
L ν∼ dS.
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Cross-section of cylinder, radius R.

Separation between cylinder and plate is h.
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• We introduce bipolar coordinates (u, v) via

x = a
sin u

cos u + cosh v
, y = a

sinh v

cos u + cosh v
,

• Cylinder boundary corresponds to vc = sinh−1 a

R
.

• Coordinates lines in the (u, v) plane are families of
orthogonal (Apollonian) circles in the (x, y) plane.



Mechanical Actions

Q
∼

= s1 e∼ u ⊗ e∼ u + s2 e∼2 ⊗ e∼2 − (s1 + s2) e∼3 ⊗ e∼3,

e∼2 = cos φ e∼ v + sin φ e∼ z, e∼3 = − sin φ e∼ v + cos φ e∼ z,

s1, s2, and φ are all functions of v alone.
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Biaxial coherence length

ξb =

√
4CL

B2(1 +
√

1 − θ)
,

where θ =
24AC

B2 is temperature dependent.

• Rescaling: η =
v

vc
, 0 ≤ η ≤ 1.

• Homeotropic nematic uniaxial ordering on both the plane
and the boundary of cylinder, sb = 1 +

√
1 − θ,

s1
∂B

= −
1

3
sb, s2

∂B
=

2

3
sb, φ

∂B
= 0.



Aim

• Our aim is to compute both the force and the torque
exerted by the plane at z = 0 on the cylinder through the
intervening liquid crystal.

• We will examine the role played in this interaction by the
biaxial states that are likely to arise in response to the
geometric frustration, especially in the vicinity of the
cylinder's surface.

• Due to symmetry of the boundary conditions, the same
force and torque would be exchanged between two
parallel cylinders of equal radius R at the distance 2h

(applicable to surface force apparatus).



Equilibrium textures

• Our BVP has been studied numerically for

1 < R/ξb < 103,

i.e. cylinders in the nano-to-microscale range.

• Smaller values of R/ξb would be unphysical since ξb is the
smallest length scale in the problem.

• Larger values of R/ξb were more problematic for our
numerical methods.



Two types of solution

• For all values of ξb, there exists a solution such that
φ(η) = 0 for all η ∈ [0, 1] (the flat solution).

• However, for separation lengths h above some critical
value, hc, there exists a second type of solution with
φ not identically zero.

• Uniaxial ordering on the cylinder and plate, with an
escape into the z-direction in the bulk.
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The escape solution
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h = 5R, R = 2ξb, θ = −8.



Flat solution
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Angle φ
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Biaxiality
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Escape solution 

If separation is large enough the director can escape into
the third dimension in an attempt to retain its uniaxiality

throughout the sample.



Energy
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For h ≥ hc, the escape texture is energetically favourable.
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The energy for the flat solution is a slowly increasing
function of h/R.



Force and Torque per unit height
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Snapping instabilities
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• Lack of monotonicity would impact upon experimental
apparatus.

• The predicted instability would be more easily detected by
a torque machine.

• A tiny hysteresis loop is associated with the force
snapping instability.



Behaviour of the force

• The flat solution at small separations resembles an
in-plane solution obtained via a director theory.

• Sonnet & Gruhn showed that the elastic force on a
cylinder per unit length due to a uniaxial nematic liquid
behaves like 1/

√
h for h small.

• We assume that the force and the separation are related
via f ∝ hλ.



Exponent of force for flat solution
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Consistent with force experienced by +1 disclination far from a plate



Conclusions

• We predict a snapping instability with an associated
hysteresis loop in the force diagram, which should occur
upon steadily reducing h.

• The bifurcation and the snapping instability are driven by
the cylinder's curvature.

• A similar instability was predicted in a twist cell at a
critical thickness - order reconstruction.
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