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The talk reports on recent work on hydrodynamic interactions (HI), a typ-
ical feature of colloidal systems. It presents examples from colloidal physics,
which illustrate the special properties of HI, and then applies HI to problems
connected with locomotion in biology. The latter is also the content of the
introduction.

In biological systems, small organisms move in a Newtonian fluid or fluid
itself is transported with the help of beating filaments (cilia) or rotating
flagella. The motion is governed by small Reynolds numbers, i.e., by a regime
where inertial effects can be neglected. Thus directed motion can only occur
in systems where time-reversal symmetry is broken as indicated by Purcell
and illustrated with his famous Purcell swimmer.

After these general remarks, hydrodynamic interactions and the methods
to treat them are introduced. To illustrate their specific properties, a system
of particles circling in a ring are considered. The particles are driven by a con-
stant tangential force and they are restricted to the ring by radial harmonic
forces. A linear stability analysis shows that the rotational motion of regular
clusters are unstable. For a strong radial trap constant, the limit cycle con-
sists of a pair of fastly moving particles (due to reduced friction) which catch
up with a slower moving single particle whereby a new particle pair forms.
Christoph Lutz in the group of Clemens Bechinger in Stuttgart realizes the
limit cycle experimentally with the help of a laser tweezer scanning along a
circle. If in addition, the laser intensity is modulated, the particles move in
a tilted sawtooth potential. Via the stationnary Smoluchowski equation the
average particle velocity for a single particle is calculated. It agrees well with
experiments. For small amplitudes of the sawtooth potential, the motion
is basically deterministic. Increasing, however, the amplitude further leads
to potential wells in the tilted sawtooth which make the motion stochastic.
A pair of particles seems to overcome the potential barriers with ease due
to hydrodynamic interactions. The associated caterpillar-like motion is de-
terministic but starts and ends by thermal fluctuations. The experimental
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observations agree well with a Brownian-dynamics modelling.
In the third part of the talk, first a system that mimics flagella or cilia

is introduced. It consists of superparamagnetic particles that form a line in
an external field. Since the particles are charged, they do not touch. The
particles can be linked together by so-called linker molecules, e.g, DNA. The
result is a flagellum that can be driven by an external magnetic field whose
direction is oscillating. Attached to a red-blood cell, it is able to transport the
cell through water, as demonstrated by Remi Dreyfus in the group of Jérome
Bibette in Paris. We modeled this system by implementing a discrete version
of the worm-like chain bending energy and by letting the particles interact
via HI. For constant magnetic field strength, both the swimming velocity
and the efficiency of the swimmer exhibit maxima as a function of the field’s
oscillation frequency. The maxima are close to each other so the swimmer
can be used in an optimal mode.

The last biological example deals with bacteria that move forward by
cranking a bundle of helical filaments. If the sense of rotation of one fila-
ment is reversed, it leaves the bundle. The bacterium tumbles, changes its
direction, and resumes its motion after the filament has joined the bundle
again. All helical filaments in the bundle necessarily move in phase. We are
interested if this synchronization can be achieved by hydrodynamic interac-
tions. We introduce a simplistic model of two flagella by approximating them
by rigidly connected spheres. Each of the two helices is fixed in space by a
pair of terminal beads that move in harmonic traps and, therefore, allow for
some sort of flexibility. The helices are each driven by the same constant
torque and indeed show the synchronization towards a zero phase difference.
Interestingly, the synchronization speed tends to zero when the trap stiffness
of the terminal beads increases. Perfectly parallel helices do not synchronize.
Calculations within the helical worm-like chain model show that intrinsic
flexibility of the helical flagella considerably speeds up the synchronization.
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