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This lecture will be about some old theoretical 
results used to interpret some recently published 
experimental data



Membrane tube (tether) networks in cells and in vitro

(taken from the work of Bruno Goud and Patricia Bassereau)



Membrane tether: a thin tube obtained by pulling a vesicle 
apart by the force applied in a point



From Cuvelier, Derenyi, Bassereau and Nassoy, Biophys J, 
April 2005 



From Cuvelier, Derenyi, Bassereau and Nassoy, Biophys J, 
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Lecture outline

• Elastic deformational modes of lamellar membranes 

• Pulling of membrane microtubules (tethers) as a method for the 
determination of membrane bending constants

• Classification of vesicle shapes

• Theoretical interpretation of tether formation

• Tether coalescence



Envelopes of different vesicular objects share a common 
property: they are composed of layers which are in contact 
but laterally unconnected

connected layers

unconnected layers



Elastic deformational modes of the bilayer  
are obtained by summing up the elastic energies of 
individual leaflets, and by taking into account that 
the areas of the two leaflets differ by

A=hΔ C

is integrated membrane curvature

h is the distance between the leaflet neutral surfaces 

C1=1/R1, C2=1/R2 are principal curvatures

R1

R2

Envelopes of different vesicular objects share a common 
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Deformational modes of a closed bilayer membrane

Spontaneous curvature C0 (Helfrich, 1973):
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Equilibrium area difference ∆A0:

(Bilayer couple hypothesis of 
Sheetz and Singer, 1974)

∆A0
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Essentially, vesicle shapes depend on local and 
nonlocal bending energy terms  
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The parameters are C0, ∆A0, kr/kc 



     

If the bilayer leaflets were made of a homogeneous 
material, we would have:

                              kr/kc = 3

The ratio kr/kc for phospholipid vesicle envelopes

For phospholipid membranes the ratio kr/kc was 
determined by the tether pulling experiment (Boži  et č
al., and Waugh et al., BJ 1992) 



Tether pulling experiment
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Measured parameters 

(Waugh et al. BJ 1992) Raphael & Waugh BJ 1996

Svetina et al. Eur. Biophys. J. 1998



Is the geometrical model reliable?



To resolve this problem we calculated shapes of 
axially strained vesicles exactly

To introduce the spirit of these calculations I shall 
first shortly discuss some aspects of the shapes of 
free vesicles



Vesicle shapes can be conveniently classified on the 
basis of the bilayer couple model in which kr/kc = ∞ 

and consequently A = AΔ Δ 0. 

Shapes correspond to the minimum of (the local) 
membrane bending energy at the constraints 

A   =  const

V   =  const

A = constΔ



Shapes of free vesicles are characterized by only two 
(geometrical) parameters:

• relative vesicle volume 

• relative integrated membrane curvature  

Rs is the radius of the sphere with the same membrane area:   A = 4πRs
2

    is integrated membrane curvature of the sphere
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An example: comparison between observed and 
calculated shapes of codocytes at v = 0.3 and different ∆a 
(from Majhenc et al., BBA 2004 )

∆a:

For each set of v and ∆a (  ) values the shape can be 
found that has the minimum membrane bending energy

c



v - a Δ phase diagram for the classification of vesicle 
shapes 

Limiting shapes are compositions of spheres or sections of 
spheres, with only two possible radii. They can be obtained 
variationally by looking at vesicles with extreme v at a given aΔ  

relative 
volume

relative integral membrane curvature 
relative area difference 

sphere



Position of various vesicle shapes in the v-∆a phase diagram 



Theoretical work on non-axisymmetrical shapes in the region 
0.5 < v < 0.7 (Ziherl and Svetina, Europhys. Lett. 2005) 



v = 0.95 (left curve)

v = 0.85 (right curve)

We “pulled” tethers out of the shapes of cigar and pear shape classes 



                      Why do tethers form?                       
Theoretical determination of shapes of vesicles under the 
effect of the axial force f (Boži  et al. Phys Rev E 1997)č

G = -  f Z0

V = const, A = const, ∆A = const        Z0: vesicle height

 z0 - v - ∆a phase diagram:

v = 0.95
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Limiting shapes are unduloids and depend on the relative 
volume v



The longer is the tether, the larger is the relative volume 
of the bulbous part of the vesicle 



About the symmetry of axially strained vesicles (Heinrich 
et al. Biophys J 1999)

v = 0.95

∆a = 1.10



Three shape pathways in the z - ∆a phase diagram (kr/kc=4): the final 
shape is asymmetrical and does not depend on the initial shape



Shape consists of the main body and the tether

Main body is an unduloid, tether is a cylinder

Unduloid can be satisfactorily expressed as 

sin =ψ
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The minimum value of the angle ψ is at 

xc=Rt Rv sinψc=2 Rt

Rv

If tether radius Rt is expressed in terms 

of membrane tension σ we get 
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Points are from Cuvelier, Derenyi, Bassereau and Nassoy, 
Biophys J, April 2005

The line is from the theoretically obtained expression



Conclusion

The phenomenon of tether coalescence can be 
consistently explained on the basis of the theory 
which was previously developed to explain tether 
formation

In the tether work participated

Ljubljana: Bojan Boži , Boštjan Žekš,č  Volkmar Heinrich 
(now in Boston) 

Rochester, N.Y.: Rick Waugh, J. Song, Rob Raphael


