Attraction and Repulsion

in Biaxial Molecular Interactions

EPIFANIO G. VIRGA SMMM Soft Matter Mathematical Modelling Department of Mathematics University of Pavia, Italy

Summary

Molecular Biaxiality Interaction Potential Stability Symmetry

Interaction Potential

The most general quadratic pair-potential was introduced by STRALEY (1974)

 $V = -U_0 \left\{ \boldsymbol{\xi} \mathbf{q} \cdot \mathbf{q}' + \boldsymbol{\gamma} \left(\mathbf{q} \cdot \mathbf{b}' + \mathbf{b} \cdot \mathbf{q}' \right) + \boldsymbol{\lambda} \mathbf{b} \cdot \mathbf{b}' \right\}$

 U_0 typical interaction energy ξ, λ, γ dimensionless parameters

alternative representation

 $V = -U_0 \{ -(\lambda + \frac{1}{3}\xi) + (\xi - \lambda)(\boldsymbol{m} \cdot \boldsymbol{m'})^2 + 2(\lambda + \gamma)(\boldsymbol{e}_{\perp} \cdot \boldsymbol{e'}_{\perp})^2 + 2(\lambda - \gamma)(\boldsymbol{e} \cdot \boldsymbol{e'})^2 \}$

Romano (2004), Longa (2005)

Molecular Biaxiality

molecular tensors

We think of biaxial molecules as being described by a biaxial tensor that can be decomposed into two traceless, irreducible orthogonal components.

Stability

The local stability of the *ground state* of V, where all three molecular axes are equally oriented, is guaranteed by the following conditions

• $\xi = 1$ $\lambda > 0$ $\lambda - |2\gamma| + 1 > 0$ • $\xi = -1$ $\lambda - |2\gamma| - 1 > 0$

Slide 4

Slide 3

potential extrema

For $\xi=1$ the stability region enjoys further properties that can be phrased in terms of the extrema of V

- V attains its absolute minimum at $(\mathbf{q}, \mathbf{b}) = (\mathbf{q}', \mathbf{b}')$
- (q, b) and (q', b') have one and the same eigenframe at all maxima of V
- Slide 5 there are extrema of V at which (q, b) and (q', b') do *not* share the same eigenframe, but they are neither minima nor maxima. GARTLAND (2005)

symmetric attraction

For $\xi = 1$ and $\lambda = \gamma^2$ the interaction potential V can be given the *symmetric* form

$$V = -U_0(\mathbf{q} + \gamma \mathbf{b}) \cdot (\mathbf{q'} + \gamma \mathbf{b'})$$

Slide 7

symmetric superposition

The pair-potential ${\cal V}$ can uniquely be written as superposition of two orthogonal symmetric components

$$V = -U_0 \left\{ a^+ \mathbf{q}^+ \cdot \mathbf{q}^{+\prime} + a^- \mathbf{q}^- \cdot \mathbf{q}^{-\prime} \right\}$$

$$\mathbf{q}^+ \cdot \mathbf{q}^- = 0$$

Slide 6

strong attraction

The inner triangle, where V attains its maxima when all corresponding molecular axes are mutually orthogonal, is interpreted as the region of strongest molecular attraction.

Precisely, $\begin{aligned} \mathbf{q}^+ = \mathbf{q} + \gamma^+ \mathbf{b} \qquad \mathbf{q}^- = \mathbf{q} + \gamma^- \mathbf{b} \\
\text{with} \qquad \gamma^\pm = \frac{3\lambda - 1 \pm \sqrt{(3\lambda - 1)^2 + 12\gamma^2}}{6\gamma} \\
\text{and} \qquad a^+ = \frac{\gamma - \gamma^-}{\gamma^+ - \gamma^-} \qquad a^- = \frac{\gamma^+ - \gamma}{\gamma^+ - \gamma^-} \end{aligned}$ Slide 8

graphical construction

- Each point (γ, λ) represents an interaction potential which can be written as a linear superposition of two orthogonal, purely quadratic (symmetric) potentials represented by points (γ⁺, λ⁺) and (γ⁻, λ⁻) on the dispersion parabola λ = γ².
- Each point (γ, λ) on a straight line through the point (0, ¹/₃) is associated with the same pair (γ⁺, λ⁺) and (γ⁻, λ⁻), but with different coefficients a⁺ and a⁻.

Slide 10

full attraction

Both a^+ and a^- are **positive** whenever $\lambda > \gamma^2$. All potentials represented by points within the dispersion parabola are **fully attractive**, as they are superpositions of attractive, symmetric potentials.

mild repulsion

Slide 11 Either a^+ or a^- is *negative* whenever $\lambda < \gamma^2$ within the stability region. The potentials represented by these points are *mildly repulsive*.

All *excluded-volume* potentials so far studied seem to fall within this category.

Symmetry

V-invariant transformations

$V = -U_0 \{ \xi^* \mathbf{q}^* \cdot \mathbf{q}^{*\prime} + \gamma^* (\mathbf{q}^* \cdot \mathbf{b}^{*\prime} + \mathbf{q}^{*\prime} \cdot \mathbf{b}^*) + \lambda^* \mathbf{b}^* \cdot \mathbf{b}^{*\prime} \}$

	$e = e^*$	$e_\perp=e^*{}_\perp$
	$\xi_1^* = 9\lambda + 6\gamma + 1$	$\xi_2^* = 9\lambda - 6\gamma + 1$
Slide 12	$\gamma_1^* = 1 - 3\lambda + 2\gamma$	$\gamma_2^* = 1 - 3\lambda - 2\gamma$
	$\lambda_1^* = 1 + \lambda - 2\gamma$	$\lambda_2^* = 1 + \lambda + 2\gamma$

$m = m^*$

$\xi_{3}^{*} = 1$
$\gamma_3^* = -\gamma$
$\lambda_3^* = \lambda$

Longa(2005), De Matteis (2005)

rescaling

Provided that $\xi^* \neq 0$, we can set either $\xi^* = 1$ or $\xi^* = -1$, depending on whether $\xi^* > 0$ or $\xi^* < 0$. Correspondingly, the pairs $(\gamma_1^*, \lambda_1^*)$ and $(\gamma_2^*, \lambda_2^*)$ become

$$\begin{split} \gamma_1^* &= \frac{1-3\lambda+2\gamma}{9\lambda+6\gamma+1} \qquad \lambda_1^* &= \frac{1+\lambda-2\gamma}{9\lambda+6\gamma+1} \\ \gamma_2^* &= \frac{1-3\lambda-2\gamma}{9\lambda-6\gamma+1} \qquad \lambda_2^* &= \frac{1+\lambda+2\gamma}{9\lambda-6\gamma+1} \end{split}$$

Slide 13

conjugation charts

symmetry properties

We denote by $\tau_1,\,\tau_2,\,{\rm and}\,\,\tau_3$ the scaled transformations. They enjoy the following properties:

- $\tau_i \circ \tau_i = 1$
- $\tau_i \circ \tau_j \circ \tau_k = 1$ for $i \neq j \neq k$
- lines $1 + \lambda + 2\gamma = 0$, $1 + \lambda 2\gamma = 0$, and $\gamma = 0$ are mutually conjugated
- Slide 14
- parabola $\lambda = \gamma^2$ is self-conjugated

De Matteis (2005)

Acknowledgements

Co-Authors

Fulvio Bisi Giovanni De Matteis Georges Durand Chuck Gartland Silvano Romano André M. Sonnet

Institutions

Royal Society of London Sothampton-Pavia Collaborative Project Italian MIUR PRIN Grant No. 2004024508

More information

Soft Matter Mathematical Modelling Department of Mathematics University of Pavia, Italy

http://smmm.unipv.it

Slide 18

