ANALISI

Cognome e Nome

Firma

Prova del 29-01-2007

- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ definita da : $f(x) = 6x^2$, $\forall x < 1$; $f(x) = 6x^{-3}$, $\forall x \ge 1$. Si consideri l'integrale improprio $J = \int_{-1}^{+\infty} f(x) dx$. Allora 6J vale
- 2. Sia $g: \mathbf{R} \to \mathbf{R}$ definita da: g(x) = -7, $\forall x < -1$; g(x) = |x|, $\forall x \in [-1, 1]$; g(x) = 1, $\forall x > 1$. Sia $G_1(x) = \int_1^x g(t) dt$, $\forall x \in \mathbf{R}$.

 Allora $G_1(-2)G_1(-1) G_1(7)$ vale $\boxed{ }$

A

- 3. Sia $I = \int_0^{\frac{\pi}{5}} \left(x \cos(5x) \frac{1}{5\pi} \right) dx$. Allora $\frac{3}{I}$ vale $\boxed{ -25}$
- 5. L'integrale $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(x^4 \sin(4x) + \frac{4}{\cos^2 x} \right) dx$ vale
- 7. Sia $f(x) = 8 x^2 e^{-x^2}$, $\forall x \in \mathbf{R}$. Siano x_1 e x_2 gli unici due punti di **minimo** della funzione f; sia x_M l'unico punto di **massimo** della funzione f. Allora $3f(x_M) + f(x_1) + f(x_2) + 2e^{-1}$ vale
- 8. Sia $u: \mathbf{R}^+ \to \mathbf{R}$ la soluzione del problema di Cauchy : $xu'(x) + u(x) = 36 x^3, \forall x > 0 ; u(1) = 9$.

 Allora u(2) vale
 - Per ognuna delle 8 domande : 2 punti, se la risposta è esatta; 0 punti, se la risposta è sbagliata o non è data.
 - Il punteggio totale ottenuto nella presente prova sarà sommato al punteggio totale conseguito nella prima prova in itinere.
 - Se il punteggio complessivo (I prova + II prova) così determinato è maggiore o uguale di 17 punti, lo studente è ammesso alla prova orale; altrimenti, dovrà ripresentarsi ad uno degli appelli d'esame successivi al primo.
 - Tempo a disposizione: 1 ora e 20 minuti.