Università di Pavia
Facoltà di Ingegneria
Master Course in Building Engineering and Architecture Italian Chinese Curriculum
Written Test of Analytical Mechanics
13 January 2010

Problem 1

Given the following curve in the three-dimensional Euclidean space

$$
p(t)-o=2 t \cos t \boldsymbol{e}_{x}+\frac{1}{2} t^{2} \boldsymbol{e}_{y}-\mathrm{e}^{-t} \boldsymbol{e}_{z},
$$

find the binormal unit vector \mathbf{b} at the point p corresponding to $t=0$.

Problem 2

A beam of length ℓ is simply supported at its ends O and A as shown in Fig. 1. An external load is applied with density per unit length

$$
\mathbf{f}(s)=-\alpha \sin \left(\frac{s}{\ell} \pi\right) \boldsymbol{e}_{y}, \quad \alpha>0
$$

where s represents the arclength, $0 \leq s \leq \ell$. The internal couple stress is given by $\boldsymbol{\Gamma}=B c \mathbf{b}$, where B is the bending rigidity, c is the curvature and \mathbf{b} is the binormal unit vector of the deformed shape.

At equilibrium,

- a. find the shape of the deformed beam, under the assumption of small deflections;
- b. find the maximum displacement $\left|y_{\max }\right|$ and the maximum deflection $\left|\theta_{\max }\right|$;
- c. under what condition on α and B can we assume small deflections?
- d. find Γ;
- e. find the stress vector $\boldsymbol{\Phi}$ and the supporting forces $\boldsymbol{\Phi}_{\mathrm{O}}, \boldsymbol{\Phi}_{\mathrm{A}}$ at O and A , respectively;
- f. check the total balance of forces and torques.

Problem 3

In a vertical plane, a cable $\overparen{A B}$ with mass density λ and length $2 \sqrt{3} \ell$ has its ends A and B constrained to slip with no friction along two guides, one vertical and the other horizontal (see Fig. 2).

An external force \mathbf{f} is applied at B

$$
\mathbf{f}=2 \lambda g \ell \boldsymbol{e}_{x}
$$

At equilibrium,

- a. find the value of $|\mathrm{OB}|$;
- b. find the shape of the cable $y=y(x)$;
- c. find the total external force $\boldsymbol{\Phi}_{\mathrm{A}}$ at A ;
- d. find the total external force $\boldsymbol{\Phi}_{\mathrm{B}}$ at B ;
- e. find the tension $\tau=\tau(x)$;
- f. find the value of $|O A|$.

