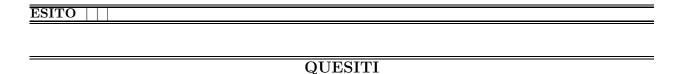
Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale (Parte II) 6 febbraio 2004

Il *candidato* scriva nello spazio sottostante il proprio Cognome e Nome.

COGNOME	NOME

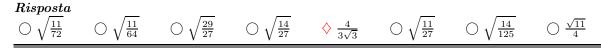

La seconda parte della **prova** consta di 4 Quesiti e durerà 2 ore. Non è permesso consultare testi od appunti, al di fuori di quelli distribuiti dalla Commissione.

La *risposta* a ciascuno di essi va scelta *esclusivamente* tra quelle già date nel testo, annerendo *un solo* circoletto \bigcirc . Una sola è la risposta corretta. Qualora sia data più di una risposta allo stesso quesito, questa sarà considerata errata, anche se una delle risposte date è corretta.

I *punteggi* per ciascun quesito sono dichiarati in *trentesimi* sul testo, nel seguente formato

$\{E,NE,A\}$

dove \mathbf{E} è il punteggio assegnato in caso di risposta Esatta, \mathbf{NE} quello in caso di risposta Romante None Esatta e \mathbf{A} quello in caso di risposta \mathbf{A} e \mathbf{A} quello in caso di risposta \mathbf{A} e \mathbf



Q1. Trovare la curvatura κ della curva

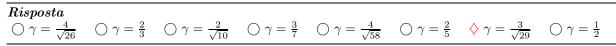
$$p(t) - O = 2(1 + \cos t)\mathbf{e}_x + (1 - \sin t)\mathbf{e}_y + e^{\sqrt{2}t}\mathbf{e}_z$$
 $t \in [0, \pi]$

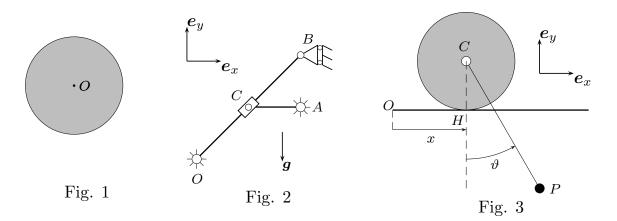
nel punto corrispondente a t=0.

 $\{5,-1,0\}$

Q2. Si consideri una lamina omogenea piana di massa 2m avente la forma di un disco di centro O e raggio $\sqrt{3}R$, posta nel piano dei versori e_x ed e_y (Figura 1). Calcolare il momento d'inerzia I_n della lamina nella direzione di un asse passante per O e diretto come il versore $\mathbf{n} = \frac{\sqrt{3}}{3}(e_x - e_y + e_z)$.

 $\{5,-1,0\}$


Q3. In un piano, un disco omogeneo di massa 2m e raggio R può rotolare senza strisciare su una guida rettilinea. Un'asta CP di massa trascurabile e lunghezza $2\sqrt{3}R$ è libera di ruotare attorno all'estremo C, incernierato nel centro del disco, mentre all'estremo P reca saldato un punto materiale di massa 2m. Esprimere il momento K_H della quantità di moto del sistema rispetto al punto H di contatto fra la guida e il disco, nella configurazione in cui $\vartheta = \frac{\pi}{2}$, e l'atto di moto, espresso nelle coordinate lagrangiane x e ϑ indicate in Figura 3, è generico.


 $\{5,-1,0\}$

$$\begin{array}{ccc} \pmb{Risposta} \\ \bigcirc mR[16R\dot{\vartheta}-4\dot{x}]\pmb{e}_z & \lozenge mR[24R\dot{\vartheta}-5\dot{x}]\pmb{e}_z & \bigcirc mR[12R\dot{\vartheta}-6\dot{x}]\pmb{e}_z & \bigcirc mR[16R\dot{\vartheta}-7\dot{x}]\pmb{e}_z \\ \bigcirc mR\left[12R\dot{\vartheta}-\frac{5}{2}\dot{x}\right]\pmb{e}_z & \bigcirc mR\left[16R\dot{\vartheta}-\frac{7}{2}\dot{x}\right]\pmb{e}_z & \bigcirc mR\left[12R\dot{\vartheta}-\frac{9}{2}\dot{x}\right]\pmb{e}_z & \bigcirc mR\left[32R\dot{\vartheta}-\frac{11}{2}\dot{x}\right]\pmb{e}_z \end{array}$$

Q4. La struttura rigida riportata in Figura 2 è posta in un piano verticale ed è composta da due aste omogenee rettilinee. L'asta OB, di massa 2m e lunghezza $2\sqrt{2}\ell$, inclinata di $\frac{\pi}{4}$ sull'orizzontale, è incernierata a terra in O e vincolata in B ad una guida verticale grazie a un carrello; l'asta AC, di massa m e lunghezza ℓ , disposta orizzontalmente, è incernierata a terra in A e vincolata in C da un carrello, posto nel punto medio dell'asta OB, libero di scorrere lungo essa. Determinare il rapporto γ fra i moduli delle reazioni vincolari in B e in O.

 $\{5,-1,0\}$

