Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale (Parte II) 8 settembre 2005

Il *candidato* scriva nello spazio sottostante il proprio Cognome e Nome.

COGNOME	NOME

La seconda parte della **prova** consta di **4** Quesiti e durerà **2** ore. Non è permesso consultare testi od appunti, al di fuori di quelli distribuiti dalla Commissione.

La *risposta* a ciascuno di essi va scelta *esclusivamente* tra quelle già date nel testo, annerendo *un solo* circoletto (). Una sola è la risposta corretta. Qualora sia data più di una risposta allo stesso quesito, questa sarà considerata errata, anche se una delle risposte date è corretta.

I punteggi per ciascun quesito sono dichiarati in trentesimi sul testo, nel seguente formato

$\{E,NE,A\}$

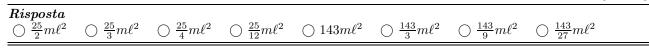
dove **E** è il punteggio assegnato in caso di risposta *Esatta*, **NE** quello in caso di risposta *Non Esatta* e **A** quello in caso di risposta *Assente*. L'esito finale della prova è determinato dalla somma *algebrica* dei punteggi parziali.

ESITO			

QUESITI

Q1. Trovare la curvatura κ della curva

$$p(t) - O = (t^2 - 1)\mathbf{e}_x + \sin t\mathbf{e}_y + \sqrt{2}\cosh t\mathbf{e}_z$$


nel punto corrispondente a t = 0.

 $\{5,-1,0\}$

$\overline{Risposta}$							
$\bigcirc \ \kappa = \frac{\sqrt{6}}{4}$	$\bigcirc \ \kappa = \frac{\sqrt{6}}{2}$	$\bigcirc \ \kappa = \sqrt{6}$	$\bigcirc \ \kappa = 2\sqrt{6}$	$\bigcirc \ \kappa = \frac{3}{4}$	$\bigcirc \ \kappa = \frac{3}{2}$	$\bigcirc \kappa = 3$	$\bigcirc \kappa = 6$

Q2. Una lamina piana viene ottenuta asportando da una lamina quadrata omogenea di centro O, massa 3m e lati di lunghezza 4ℓ quattro triangoli rettangoli isosceli di cateto ℓ , disposti in modo che le ipotenuse giacciano lungo una diagonale, con un estremo in ciascuno dei vertici del quadrato, e con gli angoli retti posizionati ciascuno su un lato del quadrato (vedi figura 1). Calcolare il momento centrale d'inerzia complessivo della lamina nella direzione e_z ortogonale al suo piano.

 $\{5,-1,0\}$

Q3. In un piano verticale, un filo AB di densità lineare di massa $2m/\ell$ e lunghezza opportuna viene fatto passare sopra un piolo P liscio di dimensioni trascurabili. All'estremità A del filo viene applicato un contrappeso di massa m, mentre nell'estremo B, posto alla stessa quota di P, viene applicata una forza $\mathbf{f} = 3mg\mathbf{n}$, con $\mathbf{n} = \cos \vartheta \mathbf{e}_x + \sin \vartheta \mathbf{e}_y$ (0 < ϑ < π /2). Calcolare il dislivello h fra il P ed A in condizioni di equilibrio.

 $\{5,-1,0\}$

Risposta

$$\bigcirc h = \frac{1}{2}\ell \quad \bigcirc h = \ell \quad \bigcirc h = \frac{3}{2}\ell \quad \bigcirc h = 2\ell \quad \bigcirc h = \frac{1}{3}\ell \quad \bigcirc h = \frac{2}{3}\ell \quad \bigcirc h = \frac{4}{3}\ell \quad \bigcirc h = \frac{5}{3}\ell$$

Q4. Una lamina omogenea semicircolare, di massa $\sqrt{3}\pi m/4$ e diametro OA = 2R ha l'estremo O del diametro vincolato ad un asse verticale r mediante una cerniera cilindrica; l'estremo A è appoggiato senza attrito all'asse, ed una molla di lunghezza a riposo nulla e costante elastica $\frac{8}{3}\frac{mg}{R}$ attrae il punto P, estremo dell'arco OP di ampiezza $\pi/3$, verso il punto A dell'asse (Figura 3). Il piano in cui si trova la lamina ruota attorno ad r con velocità angolare $\omega = \delta \sqrt{\frac{g}{R}} e_y$. Qual è il massimo valore assoluto di δ compatibile con il contatto in A?

 $\{5,-1,0\}$

 $\overline{Risposta}$

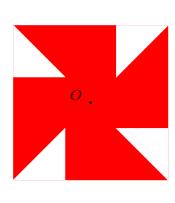


Fig. 1

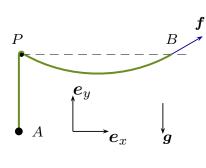
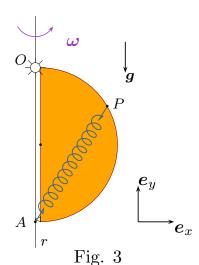



Fig. 2

